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Abstract

The Lamb wave propagation in a metallic semi-infinite medium covered with a piezoelectric layer is studied in this

paper. The numerical solution of the dispersion curve is simplified by segmenting the phase velocity spectrum into

different ranges based on the longitudinal and transverse wave velocities of both materials, and using different forms of

wave equations. The results show that the dispersion curves are asymptotic to the transverse velocity of the piezoelectric

layer as the wave number increases. The first two mode shapes of the electric potential correspond to a half-cosine

distribution at low wave number and a full-sinusoidal distribution at relatively higher wave number. � 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Vibration and wave propagation in pure piezoelectric solids have received considerable attention pre-
viously as exhibited by the works of Mindlin (1952), Tiersten (1963a,b), Bleustein (1969), and Cheng and
Sun (1975). The availability of piezoelectric materials with strong electromechanical coupling resulted in the
growing application and demand for new control elements involving piezoelectric devices as sensors and
actuators. Examples include piezoelectric ultrasonic motors, piezoelectric transducers in the application of
structural health monitoring, and vibration control or noise suppression with piezoelectric layer. Subse-
quently, the coupling effects between the piezoelectric material and the host material become a topic of
practical importance (Crawley and de Luis, 1987; Lee and Moon, 1989; Sun and Zhang, 1995; Varadan
et al., 1996).
The acoustic wave propagating in solids can be decoupled into two kinds of waves, namely, SH wave and

Lamb wave (Viktorov, 1967; Graff, 1975). When piezoelectric material is employed in solid structure, the
dispersive characteristics of both waves will be affected by the electromechanical coupling. Hence, the pi-
ezoelectric characteristics must be considered in the analytic model (Lamberti and Pappalardo, 1989;
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Nayfeh and Chien, 1992; Laprus and Danicki, 1997; Nayfeh et al., 2000). The SH wave propagating in
piezoelectric layered structures has been investigated recently by Wang et al. (2001) and Liu et al. (2001),
respectively. The Lamb wave propagating in such structures will be addressed in this paper. An accurate
model for the piezoelectric effect in a coupled structure is essential to the application of piezoelectric
materials as sensors and actuators. Fundamental to wave propagation studies would be the dispersive
characteristics of waves affected by the electromechanical effects. Furthermore, the mode shapes of the
electric potential distribution in the thickness direction of the piezoelectric layer will be derived and
compared with the assumed electric potential distribution in the various models used in vibration analysis
(Krommer and Irschik, 1999; Gopinathan et al., 2000).

2. Formulation of dispersion equation in coupled structure

Consider the wave propagation in a structure comprising a metallic semi-infinite medium with a pi-
ezoelectric layer of thickness H perfectly bonded on it as shown in Fig. 1. Continuity of displacements and
stresses between the layer and the semi-infinite medium is thus implied. The top surface of the piezoelectric
layer is free from tractions and electrically shorted. The piezoelectric relations are assumed linear and quasi-
stationary electric field is considered.

2.1. Governing equations

In rectangular Cartesian coordinates, the stress equations of motion are given by

X3
j¼1

Tij;j ¼ q€uui ð1Þ

for i ¼ 1, 2 and 3, where Tij is the stress tensor, ui the mechanical displacement, q the mass density, and
subscript ‘‘j’’ indicates differentiation with respect to xj. The electric displacement Di satisfies Maxwell’s
equation,

X3
i¼1

Di;i ¼ 0: ð2Þ

The electric field Ei (for i ¼ 1, 2 and 3) is related to the electric potential / by

Ei ¼ �/;i: ð3Þ

Fig. 1. Piezoelectric layered semi-infinite structure.
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The constitutive equations are different for different dependent on the types of piezoelectric materials
considered. In this paper, the piezoelectric material of hexagon crystal structure, class 6 mm, is employed.
For other types of piezoelectric material, the constitutive equations should be changed accordingly. As-
suming the six-fold axes of the piezoelectric material parallel to the x3-direction, its constitutive equations
can be expressed in the form

T11 ¼ c11S11 þ c12S22 þ c13S33 � e31E3;

T22 ¼ c12S11 þ c11S22 þ c13S33 � e31E3;

T33 ¼ c13S11 þ c13S22 þ c33S33 � e33E3;

T23 ¼ c44S23 � e15E2;

T13 ¼ c44S13 � e15E1;

T12 ¼ c66S12 ¼ 0:5ðc11 � c12ÞS12;
D1 ¼ e15S13 þ e11E1;

D2 ¼ e15S23 þ e11E2;

D3 ¼ e31S11 þ e31S22 þ e33S33 þ e33E3;

ð4Þ

where the coefficients c, e and e are the elastic, piezoelectric and dielectric constants, and the strain com-
ponents are defined as

S11 ¼ u1;1 S22 ¼ u2;2 S33 ¼ u3;3 S23 ¼ u2;3 þ u3;2 S13 ¼ u3;1 þ u1;3 S12 ¼ u2;1 þ u1;2: ð5Þ
For other types of piezoelectric material, the constitutive equations should be changed accordingly.
It is assumed that a state of plane strain parallel to the x2–x3 (or x1–x3) plane exists and the propagation

of waves in the x2-direction (or x1-direction) is considered. Substituting Eqs. (3)–(5) in Eqs. (1) and (2), the
electromechanical-coupled equations of motion in terms of the mechanical displacements and electric
potential can be simplified as

c11u2;22 þ c44u2;33 þ ðc13 þ c44Þu3;23 þ ðe31 þ e15Þ/;23 ¼ q€uu2

ðc13 þ c44Þu2;32 þ c44u3;22 þ c33u3;33 þ e15/;22 þ e33/;33 ¼ q€uu3

ðe15 þ e31Þu2;23 þ e15u3;22 þ e33u3;33 � e11/;22 � e33/;33 ¼ 0: ð6Þ

The governing equation for the metallic material can be obtained by setting the piezoelectric and di-
electric constants in Eq. (6) to zero, giving

c011u2;22 þ c044u2;33 þ ðc013 þ c044Þu3;23 ¼ q0€uu2
ðc013 þ c044Þu2;32 þ c044u3;22 þ c033u3;33 ¼ q0€uu3: ð7Þ

where the material properties of the metallic semi-infinite are differentiate with the prime notation
throughout this paper.

2.2. Wave motion equations in the piezoelectric layer

Consider the free wave propagation in the x2-direction, expressed in the form (Cheng and Sun, 1975)

u2 ¼ Aebkx3 cos kðx2 � vtÞ;
u3 ¼ Bebkx3 sin kðx2 � vtÞ;
/ ¼ Cebkx3 sin kðx2 � vtÞ;

ð8Þ

where k is the angular wave number, v the phase velocity, A, B and C are constants, and b is a parameter to
be determined.
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Substituting Eq. (8) in Eq. (6) yields

ðc44b2 � c11 þ qv2Þ ðc13 þ c44Þb ðe15 þ e31Þb
ðc13 þ c44Þb ðc44 � c33b2 � qv2Þ ðe15 � e33b2Þ
ðe15 þ e31Þb ðe15 � e33b2Þ ðe33b2 � e11Þ

2
4

3
5 A

B
C

0
@

1
A ¼ A K½ �

1
a
b

0
@

1
A ¼ 0; ð9Þ

where a non-trivial solution for A, B and C (or A, a and b) requires that

jKj ¼ 0: ð10Þ

For a value of v there are six roots for b, each root represents one component propagating in the piezo-
electric layer and yields a partial solution to the piezoelectric layer.
It can be shown that for v < v2, where v2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc44 þ e215=e11Þ=q

p
¼ transverse mode wave propagation

velocity in piezoelectric layer, only two of the six roots of b in Eq. (10) are real and the other four roots
contain both real and imaginary parts and hence not valid for harmonic wave propagation in the piezo-
electric layer (Parton and Kudryavtsev, 1988). For vP v2, the roots of b are either real or imaginary, taking
the form (
p1i, 
p2, 
p3) for v26 v < v1 or (
p1i, 
p2i, 
p3) for vP v1, where v1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
c11=q

p
¼ longitudinal

mode wave propagation velocity and pi, i ¼ 1, 2, 3 are positive and real. The real and imaginary roots
correspond to the non-propagating and propagating wave components respectively.
For ease of numerical solution by eliminating complex manipulation, Eq. (8) can be re-written in the

following two form. For v26 v < v1,

u2 ¼ ðD1 sin p1kx3 þ D2 cos p1kx3 þ D3e
p2kx3 þ D4e

�p2kx3 þ D5e
p3kx3 þ D6e

�p3kx3Þ cos kðx2 � vtÞ;
u3 ¼ ðD1a1 cos p1kx3 þ D2a2 sin p1kx3 þ D3a3e

p2kx3 þ D4a4e
�p2kx3 þ D5a5e

p3kx3 þ D6a6e
�p3kx3Þ sin kðx2 � vtÞ;

/ ¼ ðD1b1 cos p1kx3 þ D2b2 sin p1kx3 þ D3b3e
p2kx3 þ D4b4e

�p2kx3 þ D5b5e
p3kx3 þ D6b6e

�p3kx3Þ sin kðx2 � vtÞ;
ð11Þ

where Di, i ¼ 1–6, are constants. The eigen-solutions ðpi; ai; bi; i ¼ 3; 4; 5; 6Þ can be obtained from Eq. (9)
whereas ðp1; a1; b1Þ and ðp2; a2; b2Þ can be obtained respectively from the following equations

D
ðc44b2 þ c11 � qv2Þ ðc13 þ c44Þb ðe15 þ e31Þb

ðc13 þ c44Þb ðc44 þ c33b2 � qv2Þ ðe15 þ e33b2Þ
ðe15 þ e31Þb ðe15 þ e33b2Þ ð�e33b2 � e11Þ

2
4

3
5 1

a
b

0
@

1
A ¼ 0; ð12Þ

D
�ðc44b2 þ c11 � qv2Þ ðc13 þ c44Þb ðe15 þ e31Þb

�ðc13 þ c44Þb ðc44 þ c33b2 � qv2Þ ðe15 þ e33b2Þ
�ðe15 þ e31Þb ðe15 þ e33b2Þ ð�e33b2 � e11Þ

2
4

3
5 1

a
b

0
@

1
A ¼ 0: ð13Þ

For vP v1,

u2 ¼ ðD1 sin p1kx3 þ D2 cos p1kx3 þ D3 sin p2kx3 þ D4 cos p2kx3 þ D5e
p3kx3 þ D6e

�p3kx3Þ cos kðx2 � vtÞ;
u2 ¼ ðD1a1 cos p1kx3 þ D2a2 sin p1kx3 þ D3a3 cos p2kx3 þ D4a4 sin p2kx3 þ D5a3e

p3kx3 þ D6a3e
�p3kx3Þ

� sin kðx2 � vtÞ;
u2 ¼ ðD1b1 cos p1kx3 þ D2b2 sin p1kx3 þ D3b3 cos p2kx3 þ D4b4 sin p2kx3 þ D5b3e

p3kx3 þ D6b3e
�p3kx3Þ

� sin kðx2 � vtÞ;

ð14Þ

where the eigen-solutions ðp1; a1; b1Þ and ðp3; a3; b3Þ can be obtained from Eq. (12), ðp2; a2; b2Þ and
ðp4; a4; b4Þ from Eq. (13), and ðp5; a5; b5Þ and ðp6; a6; b6Þ from Eq. (9).
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2.3. Wave motion equations in the metallic semi-infinite medium

Similarly, the free wave propagation in the x2-direction in the metallic semi-infinite medium can be
expressed in the form

u02 ¼ A0eb
0kx3 cos kðx2 � vtÞ;

u03 ¼ B0eb
0kx3 sin kðx2 � vtÞ:

ð15Þ

Substituting Eq. (15) into Eq. (7) yields

ðc044b0
2 � c011 þ q0v2Þ ðc013 þ c044Þb0

ðc013 þ c044Þb0 ðc044 � c033b
02 � q0v2Þ

� 

A0

B0

� �
¼ A0 K 0� � 1

a0

� �
¼ 0: ð16Þ

For a value of v, there are four roots for b0 from the equation

K 0�� �� ¼ 0: ð17Þ

Depending on v, these four roots can take three different forms, namely, b0 ¼ ð
p01;
p02Þ or (
p01i;
p02) or
(
p01i;
p02i), where p01 and p02 are positive and real. The three forms correspond respectively to v < v02,
v026 v < v01 and vP v01, where v

0
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c011=q0

p
¼ longitudinal mode wave velocity, v02 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c044=q0

p
¼ transverse

mode wave velocity, and v01 > v02. The components e
�p0i ikx3 represent wave moving in the negative x3-direction

whereas the case considered here is from the piezoelectric layer in the positive x3-direction. The components
ep

0
ikx3 represent wave energy increases to infinity as x3 increases. Both cases should be discarded and only two

roots, namely b0 ¼ ð�p01;�p02Þ or (p01i;�p02) or (p
0
1i; p

0
2i), are of interest for harmonic wave propagation in the

metallic semi-infinite medium.
For ease of numerical solution by eliminating complex manipulation, Eq. (15) can be re-written in the

following two form. For v < v02,

u02 ¼ ½D0
1e

�p0
1
kx3 þ D0

2e
�p0

2
kx3 � cos kðx2 � vtÞ;

u03 ¼ ½D0
1a

0
1e

�p0
1
kx3 þ D0

2a
0
2e

�p0
2
kx3 � sin kðx2 � vtÞ;

ð18Þ

where D0
1, D

0
2 are constants. The eigen-solutions (p

0
1; a

0
1) and (p

0
2; a

0
2) can be obtained from Eq. (16).

For v026 v < v01,

u02 ¼ ½D0
1 sinðp01kx3Þ þ D0

1 cosðp01kx3Þ þ D0
2e

�p0
2
kx3 � cos kðx2 � vtÞ;

u03 ¼ ½D0
1a

0
1 cosðp01kx3Þ þ D0

1a
0
2 sinðp01kx3Þ þ D0

2a
0
3e

�p0
2
kx3 � sin kðx2 � vtÞ;

ð19Þ

where (p01; a
0
1) and (p

0
2; a

0
2) can be obtained respectively from the following equations

D0 ðc044b0
2 þ c011 � q0v2Þ ðc013 þ c044Þb0

ðc013 þ c044Þb0 ðc044 þ c033b
02 � q0v2Þ

� 

1
a0

� �
¼ 0; ð20Þ

D0 �ðc044b0
2 þ c011 � q0v2Þ ðc013 þ c044Þb0

�ðc013 þ c044Þb0 ðc044 þ c033b
02 � q0v2Þ

� 

1
a0

� �
¼ 0 ð21Þ

and (p03; a
0
3) from Eq. (16).

For vP v01,

u02 ¼ ½D0
1 sinðp01kx3Þ þ D0

1 cosðp01kx3Þ þ D0
2 sinðp02kx3Þ þ D0

2 cosðp02kx3Þ� cos kðx2 � vtÞ;
u03 ¼ ½D0

1a
0
1 cosðp01kx3Þ þ D0

1a
0
2 sinðp01kx3Þ þ D0

2a
0
3 cosðp02kx3Þ þ D0

2a
0
4 sinðp02kx3Þ� sin kðx2 � vtÞ;

ð22Þ

where (p01; a
0
1) and (p

0
3; a

0
3) can be obtained from Eq. (20), and (p02; a

0
2) and (p

0
4; a

0
4) from Eq. (21).
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2.4. Boundary conditions

The top surface of the piezoelectric layer is traction-free and electrically shorted, that is, at x3 ¼ �H ,

T33 ¼ T23 ¼ / ¼ 0: ð23Þ

The interface between the piezoelectric layer and metallic medium is electrically shorted since the latter is
semi-infinite. Hence at x3 ¼ 0,

/ ¼ 0: ð24Þ

The continuity conditions at the interface x3 ¼ 0 can be written as

u2 ¼ u02 u3 ¼ u03;

T33 ¼ T 0
33 T23 ¼ T 0

23:
ð25Þ

2.5. Wave dispersion equations

Substituting Eq. (11) or (14) and Eq. (18) or (19) or (22) into boundary conditions Eqs. (23)–(25), in view
of Eqs. (4) and (5), yield six different sets of eight homogeneous equations for Di, i ¼ 1–6 and D0

i ði ¼ 1; 2Þ.
The dispersion equations could be obtained using the non-trivial solution condition.
The six sets can be further reduced depending on the properties of the semi-infinite medium and the

piezoelectric layer. For PZT-4 and aluminum, v2 < v02 < v1 < v01 and coupled with the condition vP v2 gives
only four different sets of eight homogeneous equations.
For v26 v < v02, the wave in the PZT-4 layer consists of two propagating components (b ¼ 
p1i) and

four non-propagating components (b ¼ 
p2;
p3) while the wave in the aluminum medium comprises two
non-propagating components (b0 ¼ �p01;�p02). Using Eqs. (11) and (18), the resultant system of eight
equations can be written as

� D1ðc13 þ c33a1p1 þ e33b1p1Þ sin p1kH þ D2ðc13 � c33a2p1 � e33b2p1Þ cos p1kH
þ D3ðc13 � c33a3p2 � e33b3p2Þe�p2kH þ D4ðc13 þ c33a4p2 þ e33b4p2Þep2kH

þ D5ðc13 � c33a5p3 � e33b5p3Þe�p3kH þ D6ðc13 þ c33a6p3 þ e33b6p3Þep3kH ¼ 0; ð26aÞ

D1ðc44p1 þ c44a1 þ e15b1Þ cos p1kH � D2ð�c44p1 þ c44a2 þ e15b2Þ sin p1kH
þ D3ðc44p2 þ c44a3 þ e15b3Þe�p2kH þ D4ð�c44p2 þ c44a4 þ e15b4Þep2kH

þ D5ðc44p3 þ c44a5 þ e15b5Þe�p3kH þ D6ð�c44p3 þ c44a6 þ e15b6Þep3kH ¼ 0; ð26bÞ

D1b1 cos p1kH � D2b2 sin p1kH þ D3b3e
�p2kH þ D4b4e

p2kH þ D5b5e
�p3kH þ D6b6e

p3kH ¼ 0; ð26cÞ

D1b1 þ D3b3 þ D4b4 þ D5b5 þ D6b6 ¼ 0; ð26dÞ

D2 þ D3 þ D4 þ D5 þ D6 � D0
1 � D0

2 ¼ 0; ð26eÞ

D1a1 þ D3a3 þ D4a4 þ D5a5 þ D6a6 � D0
1a

0
1 � D0

2a
0
2 ¼ 0; ð26fÞ

D2ðc13 � c33a2p1 � e33b2p1Þ þ D3ðc13 � c33a3p2 � e33b3p2Þ þ D4ðc13 þ c33a4p2 þ e33b4p2Þ
þ D5ðc13 � c33a5p3 � e33b5p3Þ þ D6ðc13 þ c33a6p3 þ e33b6p3Þ � D0

1ðc013 þ c033a
0
1p

0
1Þ � D0

2ðc013 þ c033a
0
2p

0
2Þ ¼ 0;

ð26gÞ
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D1ðc44p1 þ c44a1 þ e15b1Þ þ D3ðc44p2 þ c44a3 þ e15b3Þ þ D4ð�c44p2 þ c44a4 þ e15b4Þ
þ D5ðc44p3 þ c44a5 þ e15b5Þ þ D6ð�c44p3 þ c44a6 þ e15b6Þ � D0

1c
0
44ð�p01 þ a0

1Þ � D0
2c

0
44ð�p02 þ a0

2Þ ¼ 0:

ð26hÞ

Let the coefficient matrix be denoted as Rmn, where m; n ¼ 1–8. The wave dispersion equation can be ob-
tained by imposing the non-trivial solution condition, that is,

Rmnj j ¼ 0: ð27Þ
Thus, for a given value of phase velocity v, the wave number k is solved through Eq. (27). Similar equations
can be written for the remaining three ranges of v.
For v026 v < v1, the wave in the PZT-4 layer consists of two propagating components (b ¼ 
p1i) and

four non-propagating components (b ¼ 
p2;
p3) while the wave in the aluminum medium comprises one
propagating component (b0 ¼ p01i) and one non-propagating component (b

0 ¼ �p02). Eqs. (11) and (19) are
used to obtain the resultant system of eight equations.
For v16 v < v01, the wave in the PZT-4 layer consists of four propagating components (b ¼ 
p1i;
p2i)

and two non-propagating components (b ¼ 
p3) while the wave in the aluminum medium comprises one
propagating component (b0 ¼ p01i) and one non-propagating component (b

0 ¼ �p02). Hence, Eqs. (14) and
(19) are used.
For v016 v, the wave in the PZT-4 layer consists of four propagating components (b ¼ 
p1i;
p2i) and

two non-propagating components (b ¼ 
p3) while the wave in the aluminum medium comprises two
propagating components (b0 ¼ p01i, p

0
2i). Hence, Eqs. (14) and (22) are used.

For a given value of v, the eigen-solution (kH ;Di;D0
i) can be obtained from one of the above four sets of

equations where kH is the wave number, non-dimensionalised by the thickness of the piezoelectric layer.
The shape of the distribution of displacements and potentials inside the piezoelectric layer is obtained
subsequently from Eq. (11) or (14) and that of the displacements inside the metallic semi-infinite from Eqs.
(18), (19) or (22).

3. Numerical results

Using the material properties given in Table 1, the dispersion curves of the first five modes obtained
based on the four phase velocity ranges are shown to be continuous in Fig. 2. The phase velocities for the
five modes are asymptotic to the transverse velocity v2 of the piezoelectric layer as the product kH increases

Table 1

Material properties of PZT-4 and aluminum

PZT Aluminum

q ð�103 kg/m3Þ 7.5 2.7

c11 ð�1010 N/m2Þ 13.2 10.2

c33 ð�1010 N/m2Þ 11.5 10.2

c44 ð�1010 N/m2Þ 2.6 2.6

c12 ð�1010 N/m2Þ 7.1 5.0

c13 ð�1010 N/m2Þ 7.3 5.0

e15 ðC/m2Þ 10.5 –

e33 ðC/m2Þ 14.1 –

e31 ðC/m2Þ �4.1 –

e11 ð�10�9 F/mÞ 7.1 –

e33 ð�10�9 F/mÞ 5.8 –

v1 ð�103 m/sÞ 4.2 6.2

v2 ð�103 m/sÞ 2.4 3.1
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and increase to infinity as the product kH approaches zero. This phenomenon can be observed in most
dispersion curves of various wave propagation problems. Because the wavelength approaches infinity as the
product kH approaches zero, it takes almost no time for the wave to travel inside the structure, that is, the
phase velocity approaches infinity.
Figs. 3–5 are the first three mode shapes of the electric potential distribution along x3-direction in the

piezoelectric layer at different wave numbers, respectively. For easy comparison, the electric potential is
normalized by setting the largest value in each curve equal to 1 or �1. In Fig. 3, the first mode shape of the
electric potential at small wave number (kH is approximately 0.75) follows a half-cosine distribution. As kH
increases, the first mode shape distorts into a combination of a half-cosine and a full-cycle sine distribution
and approaches a full-cycle sinusoidal distribution when kH reaches a relatively higher value (�1.75). As
kH increases further, the mode shape continues to distort. It can be seen from Fig. 4 that the same trend is
observed for the second mode shape of the electric potential. The demarcating kH values are �0.75 and 2.5,
respectively. However, the higher mode shapes are much more complicated, as depicted by the third mode
shape shown in Fig. 5. The potential distribution of the third mode shape at kH ¼ 0:75 is not depicted
because the corresponding velocity is too large for numerical calculation, as illustrated in Fig. 2. The first

Fig. 2. Dispersion curves of the first five modes from four phase velocity ranges.

Fig. 3. Distribution of potential of first mode shape along x3-direction in the piezoelectric layer for different wave numbers.
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two mode shapes of electric potential displaying a half-cosine distribution at small wave number is con-
sistent with the results of the SH wave propagation for the same structure (Wang et al., 2001).
In vibration analysis, only the basic modes are of interests, the assumption of half cosine distribution of

potential is valid at small wave number. However the more precise model is a combination of a cosine
distribution and a full-cycle sine distribution for higher frequency consideration.

4. Conclusion

The Lamb wave propagation in a metallic semi-infinite medium covered with a piezoelectric layer is
studied. Due to the electromechanical coupling effect of the layered structure, the numerical solution of the
characteristics of wave components propagating inside the piezoelectric layer and the semi-infinite medium
becomes complex. It is shown that by using different forms of wave equations and segmenting the phase
velocity spectrum into different ranges, continuous dispersion curves can be obtained. The dispersion curves
are asymptotic to the transverse velocity of the piezoelectric layer. The first two mode shapes of the electric
potential distribution along x3-direction in the piezoelectric layer correspond to a half-cosine distribution at
low wave number and a full-sinusoidal distribution at higher wave number.

Fig. 4. Distribution of potential of second mode shape along x3-direction in the piezoelectric layer for different wave numbers.

Fig. 5. Distribution of potential of third mode shape along x3-direction in the piezoelectric layer for different wave numbers.
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