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Abstract

The Lamb wave propagation in a metallic semi-infinite medium covered with a piezoelectric layer is studied in this
paper. The numerical solution of the dispersion curve is simplified by segmenting the phase velocity spectrum into
different ranges based on the longitudinal and transverse wave velocities of both materials, and using different forms of
wave equations. The results show that the dispersion curves are asymptotic to the transverse velocity of the piezoelectric
layer as the wave number increases. The first two mode shapes of the electric potential correspond to a half-cosine
distribution at low wave number and a full-sinusoidal distribution at relatively higher wave number. © 2002 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Vibration and wave propagation in pure piezoelectric solids have received considerable attention pre-
viously as exhibited by the works of Mindlin (1952), Tiersten (1963a,b), Bleustein (1969), and Cheng and
Sun (1975). The availability of piezoelectric materials with strong electromechanical coupling resulted in the
growing application and demand for new control elements involving piezoelectric devices as sensors and
actuators. Examples include piezoelectric ultrasonic motors, piezoelectric transducers in the application of
structural health monitoring, and vibration control or noise suppression with piezoelectric layer. Subse-
quently, the coupling effects between the piezoelectric material and the host material become a topic of
practical importance (Crawley and de Luis, 1987; Lee and Moon, 1989; Sun and Zhang, 1995; Varadan
et al., 1996).

The acoustic wave propagating in solids can be decoupled into two kinds of waves, namely, SH wave and
Lamb wave (Viktorov, 1967; Graff, 1975). When piezoelectric material is employed in solid structure, the
dispersive characteristics of both waves will be affected by the electromechanical coupling. Hence, the pi-
ezoelectric characteristics must be considered in the analytic model (Lamberti and Pappalardo, 1989;
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Nayfeh and Chien, 1992; Laprus and Danicki, 1997; Nayfeh et al., 2000). The SH wave propagating in
piezoelectric layered structures has been investigated recently by Wang et al. (2001) and Liu et al. (2001),
respectively. The Lamb wave propagating in such structures will be addressed in this paper. An accurate
model for the piezoelectric effect in a coupled structure is essential to the application of piezoelectric
materials as sensors and actuators. Fundamental to wave propagation studies would be the dispersive
characteristics of waves affected by the electromechanical effects. Furthermore, the mode shapes of the
electric potential distribution in the thickness direction of the piezoelectric layer will be derived and
compared with the assumed electric potential distribution in the various models used in vibration analysis
(Krommer and Irschik, 1999; Gopinathan et al., 2000).

2. Formulation of dispersion equation in coupled structure

Consider the wave propagation in a structure comprising a metallic semi-infinite medium with a pi-
ezoelectric layer of thickness H perfectly bonded on it as shown in Fig. 1. Continuity of displacements and
stresses between the layer and the semi-infinite medium is thus implied. The top surface of the piezoelectric
layer is free from tractions and electrically shorted. The piezoelectric relations are assumed linear and quasi-
stationary electric field is considered.

2.1. Governing equations

In rectangular Cartesian coordinates, the stress equations of motion are given by
3

ZTU‘/ zpu, (1)

J=1

for i =1, 2 and 3, where Tj; is the stress tensor, u; the mechanical displacement, p the mass density, and
subscript “/”” indicates differentiation with respect to x;. The electric displacement D; satisfies Maxwell’s
equation,

ZDf‘,« =0. (2)

The electric field £; (for i = 1, 2 and 3) is related to the electric potential ¢ by

E i = —d) it (3)
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Fig. 1. Piezoelectric layered semi-infinite structure.
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The constitutive equations are different for different dependent on the types of piezoelectric materials
considered. In this paper, the piezoelectric material of hexagon crystal structure, class 6 mm, is employed.
For other types of piezoelectric material, the constitutive equations should be changed accordingly. As-
suming the six-fold axes of the piezoelectric material parallel to the x;-direction, its constitutive equations
can be expressed in the form

Ty = ciiSi + c128n + 13833 — ea B3,

Ty = c1p8S1 + c1iSan + 13833 — e31E3,

= ci3Si1 + c138n + €33833 — esks,

T3 = caaSp3 — ersky,

T3 = cuS13 — eisky, (4)
Ty = ce6S12 = 0.5(c1y — ¢12)S12,

Dy = e5813 + enky,

Dy = e158; + enky,

D3 = 31811 + €318 + 33833 + e33E3,

where the coefficients ¢, e and ¢ are the elastic, piezoelectric and dielectric constants, and the strain com-
ponents are defined as

o3
|

Si=ug Sn=upn Sy=uz3 Sy=u3z+usy Sz=uz+uz Sip=ur +us. (5

For other types of piezoelectric material, the constitutive equations should be changed accordingly.

It is assumed that a state of plane strain parallel to the x,—x; (or x;—x;) plane exists and the propagation
of waves in the x,-direction (or x;-direction) is considered. Substituting Egs. (3)—(5) in Egs. (1) and (2), the
electromechanical-coupled equations of motion in terms of the mechanical displacements and electric
potential can be simplified as

Clrittany + Caglia 33 + (€13 + Cag)us s + (€3 + eis)d o3 = pily
(c13 + caa)urzp + Cagts n + C33u333 + €15 o + €330 33 = pils
(ers + e31)uz 3 + ersuzny + essuzzz — €11y — e33¢ 33 = 0. (6)

The governing equation for the metallic material can be obtained by setting the piezoelectric and di-
electric constants in Eq. (6) to zero, giving

C/“Hz,zz + 02;4”2,33 + (0/13 + 024)7/!3423 = p'ii,

(c13 + iy urn + iyt o + chyuz 33 = plis. (7)
where the material properties of the metallic semi-infinite are differentiate with the prime notation
throughout this paper.

2.2. Wave motion equations in the piezoelectric layer

Consider the free wave propagation in the x,-direction, expressed in the form (Cheng and Sun, 1975)
uy = Ae” cosk(x, — vt),
us = Be" sink(x, — vt), (8)
¢ = Ce"™ sink(xy — vt),

where k is the angular wave number, v the phase velocity, 4, B and C are constants, and b is a parameter to
be determined.
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Substituting Eq. (8) in Eq. (6) yields

(caab® — c11 + pv?) (c13 + cag)b (e1s +es31)b A 1
(Cl} + C44)b (C44 — C33b2 — pl)z) (615 — 633192) B = A[K] o = 07 (9)
(e15 +e31)b (e15 — exsh?) (es3b® —en) | \C B
where a non-trivial solution for 4, B and C (or 4, « and f) requires that
K| = 0. (10)

For a value of v there are six roots for b, each root represents one component propagating in the piezo-
electric layer and yields a partial solution to the piezoelectric layer.

It can be shown that for v < vy, where vy = \/(cas + €35/¢11)/p = transverse mode wave propagation
velocity in piezoelectric layer, only two of the six roots of b in Eq. (10) are real and the other four roots
contain both real and imaginary parts and hence not valid for harmonic wave propagation in the piezo-
electric layer (Parton and Kudryavtsev, 1988). For v > v,, the roots of b are either real or imaginary, taking
the form (£pii, £py, £p3) for v, <v < vy or (£pii, £poi, £p3) for v = vy, where v; = \/c11/p = longitudinal
mode wave propagation velocity and p;, i = 1, 2, 3 are positive and real. The real and imaginary roots
correspond to the non-propagating and propagating wave components respectively.

For ease of numerical solution by eliminating complex manipulation, Eq. (8) can be re-written in the
following two form. For v, <v < vy,

U = (D] Sil’lplk.)C3 + D2 COSpﬂOC:; + Dj;(‘l‘pzkx3 + D4eimk)63 + Dsepgkx3 + D6€7p3kx3) COS k(x2 — Ut),

Uz = (D]Oﬁl COSplkX3 + DQO(Z Sinplkx3 + D3d3ep2kx3 + D4oc4e_”2’°‘3 + D5oc5ep3k"3 + D6océe_”3’“3) sin k(x2 — l)f),

(}b = (Dlﬁl COSplk)C3 + Dzﬁz sinplkxg + D3ﬁ3e”2k"3 + D4ﬂ4€7p2kx3 + D5‘856p3/“3 + D6ﬂ6€7p3kv3) sin k(X2 — U[),
(1)

where D;, i = 1-6, are constants. The eigen-solutions (p;, o, f;,i = 3,4,5,6) can be obtained from Eq. (9)
whereas (p, o, ;) and (p, o, f,) can be obtained respectively from the following equations

_(C44b2 +c — pvz) (C]3 + C44)b (615 + 631)17 1
D (013 + C44)b (044 + C33b2 — pl)z) (615 + 633b2) 04 = 07 (12)
(e1s +e31)b (e1s + exsh?) (—eab® — &) B
-—(6’44[32 +cin - PUZ) (c13 4 caa)b (e1s +e31)b 1/1
D —(6‘13 + C44)b <C44 + C33b2 — pl)2> (615 + @33b2) o =0. (13)
—(e1s +e31)b (e1s + exsb?) (—enb* —en) | \ B
For v > vy,

Uy = (Dl sinplkx3 + D2 COSplkX3 + D3 sinpzkx3 + D4 COszkX; + D5Cp}kX3 + D(,eip‘gkx}) COS k(XZ — l)l‘)7
Uy = (D]OC] COoS p1 kxs + Dsoy Sinp1kX3 + D3 COszk)C3 + Dyoy sinpzkx3 + D5O(3€p3kx3 + D6d367p3m3)

X sink(x; — vt),

(14)

uy = (D) B, cos prkxs + Daf, sin pikxs + D3 B €08 pakxs + Dy sin paks + DsB3e™ + Dgfze75)

X sink(x; — vt),

where the eigen-solutions (p;,ay, ;) and (ps, a3, ;) can be obtained from Eq. (12), (p»,,f,) and
(ps, o4, B4) from Eq. (13), and (ps, a5, f5) and (ps, o, ) from Eq. (9).
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2.3. Wave motion equations in the metallic semi-infinite medium

Similarly, the free wave propagation in the x,-direction in the metallic semi-infinite medium can be
expressed in the form

/ 1 b'kx
uy, = A'e”"* cos k(x, — vt),

e (15)
uy, = B'e"* sink(x, — vt).
Substituting Eq. (15) into Eq. (7) yields
AN 1,2 / I\ /
(chub , 011,‘*‘,?” ) , (C13/+ f;44)b g2 } <‘;,> =4 [K’] < 1/> =0. (16)
(ch3 +ciy)b (chy — b — ) %
For a value of v, there are four roots for »' from the equation
K| =o. (17)

Depending on v, these four roots can take three different forms, namely, b’ = (+p}, £p5) or (£p}i, £p)) or
(£pii, £p51), where p| and p) are positive and real. The three forms correspond respectively to v < v,
vy<v < v and v > v}, where v} = /¢, /p’ = longitudinal mode wave velocity, v, = \/cj,/p’ = transverse
mode wave velocity, and v > v}. The components e 7% represent wave moving in the negative x;-direction
whereas the case considered here is from the piezoelectric layer in the positive x;-direction. The components
7% represent wave energy increases to infinity as x; increases. Both cases should be discarded and only two
roots, namely b’ = (—p}, —p5) or (p}i, —p}) or (i1, phi), are of interest for harmonic wave propagation in the
metallic semi-infinite medium.

For ease of numerical solution by eliminating complex manipulation, Eq. (15) can be re-written in the
following two form. For v < v},

uy = [De "% 4 Dl P53 cos k(x, — vt), (18)
uy = (Do e 4 Dhole PR sin k(xy — vt),
where D’l, D), are constants. The eigen-solutions (p}, &) and (p}, o) can be obtained from Eq. (16).
For v, <v < v},

uy = [D sin(plkxs) + D) cos(p)kxs) + Dye ™3] cos k(x, — vt),

’ 19
uy = [D o) cos(pkxs) + D)oy sin(p) ks ) + Dholye 7223 sin k(x; — vt), 19)
where (p}, o)) and (p}, o) can be obtained respectively from the following equations
D [ (C:Mb/z + clll - p/UZ) (0/13 + C;:M)b/ :| < 1/) =0 (20)
(¢13 + i)t (chy +chsd” = p'v?) J\ & ’
o [ —(cub” + ¢ = ) (el el } ( 1 > _ 1)
—(c13 + )b’ (chy + b = p'0?) J\
and (p;, «3) from Eq. (16).
For v > v},
u, = [D) sin(pikxs) + D cos(pikxs) + Df sin(phkxs) 4+ D5 cos(phkxs)] cosk(xy — vt), (22)
uy = D)ol cos(pykxs) + Doty sin(pykxs) + Daoty cos(phks) + Dy sin(phks)] sin k(xy — vr),

where (p}, o)) and (p}, o) can be obtained from Eq. (20), and (p}, ) and (p;, o) from Eq. (21).
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2.4. Boundary conditions

The top surface of the piezoelectric layer is traction-free and electrically shorted, that is, at x3; = —H,
T3 =Tn=¢=0. (23)

The interface between the piezoelectric layer and metallic medium is electrically shorted since the latter is
semi-infinite. Hence at x; = 0,

¢ =0. (24)
The continuity conditions at the interface x; = 0 can be written as

/ ’
U =u, Uz = Uy,

(25)
T3 =Ty Ty =T

2.5. Wave dispersion equations

Substituting Eq. (11) or (14) and Eq. (18) or (19) or (22) into boundary conditions Eqgs. (23)—(25), in view
of Eqgs. (4) and (5), yield six different sets of eight homogeneous equations for D;, i = 1-6 and D, (i = 1,2).
The dispersion equations could be obtained using the non-trivial solution condition.

The six sets can be further reduced depending on the properties of the semi-infinite medium and the
piezoelectric layer. For PZT-4 and aluminum, v, < v, < v; < v} and coupled with the condition v > v, gives
only four different sets of eight homogeneous equations.

For v, <v < v}, the wave in the PZT-4 layer consists of two propagating components (b = £p;i) and
four non-propagating components (b = £p,, p;) while the wave in the aluminum medium comprises two
non-propagating components (' = —pj, —p,). Using Eqs. (11) and (18), the resultant system of eight
equations can be written as

— Di(c13 + cazoupr + essfipr) sin pikH + D> (c13 — c3300p1 — exsfopr) cos prkH
+ Ds(c13 — cx3a3pr — ex3fapa)e M 4 Dy(crs + cx3ups + exsPupa)e
+ Ds(c13 — e330sps — ex3Bsps)e P + Dg(crs + exsoips + €33 feps)e”™ =0, (26a)

Di(caapr + caaoty + e15P1) cos prkH — Dr(—caspr + caa®% + eysf,) sin pikH
+ Ds(caspr + casos + ersf)e M+ Dy(—caaps + casos + esfy) e

+ Ds(caaps + caatts + e1sBs)e P + Dg(—caaps + caatis + e15fg)e” ™ =0, (26b)
D1 By cos pikH — D, sin pikH + D36 P 4+ DyB,eP™ 4 Dspse P 4 Dy fee ! = 0, (26¢)
Dify + D35 + Dafy + Dsps + Defs = 0, (26d)
Dy + D3+ D4+ Ds+Ds— D) — D, =0, (26e)
Dyoyy + Dyos + Dyoiy + Dsas + Dot — Doy — Doty = 0, (26f)

Ds(c13 — ca300p1 — exsfopr) + Ds(ci3 — cazazps — ex3fapa) + Dalciz + cazoups + ex3fups)
+ Ds(c13 — c3305p3 — exsfsps) + De(ci13 + cx3tps + exsfops) — D) (cl3 + c5300p1) — Dy(cj; + cz06p,) = 0,
(26g)
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Dy (caapy + casoy + e1sfy) + Ds(caaps + casvis + e15f3) + Da(—caaps + caavis + e15f,4)
+ Ds(caaps + caatts + e15Ps) + De(—casps + castts + e1sfs) — Dyciy(—p) + o)) — Dyl (—ps + o5) = 0.
(26h)

Let the coefficient matrix be denoted as R,,,, where m,n = 1-8. The wave dispersion equation can be ob-
tained by imposing the non-trivial solution condition, that is,

|Rui| = 0. (27)

Thus, for a given value of phase velocity v, the wave number £ is solved through Eq. (27). Similar equations
can be written for the remaining three ranges of v.

For v}, <v < vy, the wave in the PZT-4 layer consists of two propagating components (b = %p;i) and
four non-propagating components (b = £p,, +p;) while the wave in the aluminum medium comprises one
propagating component (' = p|i) and one non-propagating component (o' = —p}). Egs. (11) and (19) are
used to obtain the resultant system of eight equations.

For v; <v < v}, the wave in the PZT-4 layer consists of four propagating components (b = £p,i, £psi)
and two non-propagating components (b = +p;) while the wave in the aluminum medium comprises one
propagating component (b’ = pji) and one non-propagating component (' = —p}). Hence, Eqs. (14) and
(19) are used.

For v} <v, the wave in the PZT-4 layer consists of four propagating components (b = £pi, £p,i) and
two non-propagating components (b = +p;) while the wave in the aluminum medium comprises two
propagating components (5" = p}i, p51). Hence, Eqs. (14) and (22) are used.

For a given value of v, the eigen-solution (kH, D;, D}) can be obtained from one of the above four sets of
equations where kH is the wave number, non-dimensionalised by the thickness of the piezoelectric layer.
The shape of the distribution of displacements and potentials inside the piezoelectric layer is obtained
subsequently from Eq. (11) or (14) and that of the displacements inside the metallic semi-infinite from Egs.
(18), (19) or (22).

3. Numerical results
Using the material properties given in Table 1, the dispersion curves of the first five modes obtained

based on the four phase velocity ranges are shown to be continuous in Fig. 2. The phase velocities for the
five modes are asymptotic to the transverse velocity v, of the piezoelectric layer as the product kH increases

Table 1
Material properties of PZT-4 and aluminum
PZT Aluminum

p (x10° kg/m?) 7.5 2.7
e (x10'° N/m?) 13.2 10.2
¢33 (x10'° N/m?) 11.5 10.2
c4s (x10'° N/m?) 2.6 2.6
¢y (x10'° N/m?) 7.1 5.0
c13 (x10'° N/m?) 73 5.0
€1s (C/mz) 10.5 —
es; (C/m?) 14.1 -
€3] (C/mz) —4.1 —
e (x107° F/m) 7.1 -
£33 (X1079 F/m) 5.8 —
vy (x10° m/s) 42 6.2

vy (x10° m/s) 2.4 3.1
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Fig. 2. Dispersion curves of the first five modes from four phase velocity ranges.

and increase to infinity as the product kH approaches zero. This phenomenon can be observed in most
dispersion curves of various wave propagation problems. Because the wavelength approaches infinity as the
product kH approaches zero, it takes almost no time for the wave to travel inside the structure, that is, the
phase velocity approaches infinity.

Figs. 3-5 are the first three mode shapes of the electric potential distribution along x3-direction in the
piezoelectric layer at different wave numbers, respectively. For easy comparison, the electric potential is
normalized by setting the largest value in each curve equal to 1 or —1. In Fig. 3, the first mode shape of the
electric potential at small wave number (kH is approximately 0.75) follows a half-cosine distribution. As kH
increases, the first mode shape distorts into a combination of a half-cosine and a full-cycle sine distribution
and approaches a full-cycle sinusoidal distribution when kH reaches a relatively higher value (x1.75). As
kH increases further, the mode shape continues to distort. It can be seen from Fig. 4 that the same trend is
observed for the second mode shape of the electric potential. The demarcating kH values are ~0.75 and 2.5,
respectively. However, the higher mode shapes are much more complicated, as depicted by the third mode
shape shown in Fig. 5. The potential distribution of the third mode shape at kH = 0.75 is not depicted
because the corresponding velocity is too large for numerical calculation, as illustrated in Fig. 2. The first

Potential
1.0+

0.8+
0.6+
0.4+

0.2

-0.2 X,/ H
kH=1.75

0.4
kH=1.35
-0.64

kH=0.75
0.8

-1.0-

Fig. 3. Distribution of potential of first mode shape along x;-direction in the piezoelectric layer for different wave numbers.
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Fig. 4. Distribution of potential of second mode shape along x;-direction in the piezoelectric layer for different wave numbers.
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Fig. 5. Distribution of potential of third mode shape along x;-direction in the piezoelectric layer for different wave numbers.

two mode shapes of electric potential displaying a half-cosine distribution at small wave number is con-
sistent with the results of the SH wave propagation for the same structure (Wang et al., 2001).

In vibration analysis, only the basic modes are of interests, the assumption of half cosine distribution of
potential is valid at small wave number. However the more precise model is a combination of a cosine
distribution and a full-cycle sine distribution for higher frequency consideration.

4. Conclusion

The Lamb wave propagation in a metallic semi-infinite medium covered with a piezoelectric layer is
studied. Due to the electromechanical coupling effect of the layered structure, the numerical solution of the
characteristics of wave components propagating inside the piezoelectric layer and the semi-infinite medium
becomes complex. It is shown that by using different forms of wave equations and segmenting the phase
velocity spectrum into different ranges, continuous dispersion curves can be obtained. The dispersion curves
are asymptotic to the transverse velocity of the piezoelectric layer. The first two mode shapes of the electric
potential distribution along x3-direction in the piezoelectric layer correspond to a half-cosine distribution at
low wave number and a full-sinusoidal distribution at higher wave number.
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